mirror of
https://github.com/reonokiy/blog.nokiy.net.git
synced 2025-06-15 11:12:54 +02:00
test: remove scrollbar and photoswipe
This commit is contained in:
parent
433dea51d6
commit
0e5905aaa3
11 changed files with 42 additions and 30 deletions
16
pnpm-lock.yaml
generated
16
pnpm-lock.yaml
generated
|
@ -1862,8 +1862,8 @@ packages:
|
|||
ee-first@1.1.1:
|
||||
resolution: {integrity: sha512-WMwm9LhRUo+WUaRN+vRuETqG89IgZphVSNkdFgeb6sS/E4OrDIN7t48CAewSHXc6C8lefD8KKfr5vY61brQlow==}
|
||||
|
||||
electron-to-chromium@1.5.152:
|
||||
resolution: {integrity: sha512-xBOfg/EBaIlVsHipHl2VdTPJRSvErNUaqW8ejTq5OlOlIYx1wOllCHsAvAIrr55jD1IYEfdR86miUEt8H5IeJg==}
|
||||
electron-to-chromium@1.5.153:
|
||||
resolution: {integrity: sha512-4bwluTFwjXZ0/ei1qDpHDGzVveuBfx4wiZ9VQ8j/30+T2JxSF2TfZ00d1X+wNMeDyUdZXgLkJFbarJdAMtd+/w==}
|
||||
|
||||
emmet@2.4.11:
|
||||
resolution: {integrity: sha512-23QPJB3moh/U9sT4rQzGgeyyGIrcM+GH5uVYg2C6wZIxAIJq7Ng3QLT79tl8FUwDXhyq9SusfknOrofAKqvgyQ==}
|
||||
|
@ -2162,8 +2162,8 @@ packages:
|
|||
eventemitter3@5.0.1:
|
||||
resolution: {integrity: sha512-GWkBvjiSZK87ELrYOSESUYeVIc9mvLLf/nXalMOS5dYrgZq9o5OVkbZAVM06CVxYsCwH9BDZFPlQTlPA1j4ahA==}
|
||||
|
||||
eventsource-parser@3.0.1:
|
||||
resolution: {integrity: sha512-VARTJ9CYeuQYb0pZEPbzi740OWFgpHe7AYJ2WFZVnUDUQp5Dk2yJUgF36YsZ81cOyxT0QxmXD2EQpapAouzWVA==}
|
||||
eventsource-parser@3.0.2:
|
||||
resolution: {integrity: sha512-6RxOBZ/cYgd8usLwsEl+EC09Au/9BcmCKYF2/xbml6DNczf7nv0MQb+7BA2F+li6//I+28VNlQR37XfQtcAJuA==}
|
||||
engines: {node: '>=18.0.0'}
|
||||
|
||||
eventsource@3.0.7:
|
||||
|
@ -5876,7 +5876,7 @@ snapshots:
|
|||
browserslist@4.24.5:
|
||||
dependencies:
|
||||
caniuse-lite: 1.0.30001718
|
||||
electron-to-chromium: 1.5.152
|
||||
electron-to-chromium: 1.5.153
|
||||
node-releases: 2.0.19
|
||||
update-browserslist-db: 1.1.3(browserslist@4.24.5)
|
||||
|
||||
|
@ -6161,7 +6161,7 @@ snapshots:
|
|||
|
||||
ee-first@1.1.1: {}
|
||||
|
||||
electron-to-chromium@1.5.152: {}
|
||||
electron-to-chromium@1.5.153: {}
|
||||
|
||||
emmet@2.4.11:
|
||||
dependencies:
|
||||
|
@ -6587,11 +6587,11 @@ snapshots:
|
|||
|
||||
eventemitter3@5.0.1: {}
|
||||
|
||||
eventsource-parser@3.0.1: {}
|
||||
eventsource-parser@3.0.2: {}
|
||||
|
||||
eventsource@3.0.7:
|
||||
dependencies:
|
||||
eventsource-parser: 3.0.1
|
||||
eventsource-parser: 3.0.2
|
||||
|
||||
expect-type@1.2.1:
|
||||
optional: true
|
||||
|
|
|
@ -122,11 +122,14 @@ document.addEventListener('astro:page-load', initWaline)
|
|||
--at-apply: 'start-0 rounded border-secondary/25';
|
||||
}
|
||||
#waline .wl-emoji-popup .wl-tab-wrapper::-webkit-scrollbar {
|
||||
--at-apply: 'w-1.2';
|
||||
--at-apply: 'w-1.25';
|
||||
}
|
||||
#waline .wl-emoji-popup .wl-tab-wrapper::-webkit-scrollbar-thumb {
|
||||
--at-apply: 'bg-secondary/25';
|
||||
}
|
||||
#waline .wl-emoji-popup .wl-tab-wrapper::-webkit-scrollbar-thumb:hover {
|
||||
--at-apply: 'bg-secondary/40';
|
||||
}
|
||||
#waline .wl-emoji-popup .wl-tab-wrapper::-webkit-scrollbar-track-piece {
|
||||
--at-apply: 'bg-transparent';
|
||||
}
|
||||
|
|
|
@ -19,7 +19,7 @@ function initScrollbar() {
|
|||
|
||||
const hideScrollbar = debounce(() => {
|
||||
body.classList.remove('scrolling')
|
||||
}, 1200)
|
||||
}, 1500)
|
||||
|
||||
scrollHandler = () => {
|
||||
body.classList.add('scrolling')
|
||||
|
|
|
@ -17,7 +17,7 @@ $$
|
|||
t=\frac{1}{|G|}\sum_{g\in G}|\text{Fix}(g)|
|
||||
$$
|
||||
|
||||
For each integer $n\ge2$, the quotient group $\mathbb{Z}/n\mathbb{Z}$ is a cyclic group generated by $1+n\mathbb{Z}$ and so $\color{red}{\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n}$.
|
||||
For each integer $n\ge2$, the quotient group $\mathbb{Z}/n\mathbb{Z}$ is a cyclic group generated by $1+n\mathbb{Z}$ and so $\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n$.
|
||||
|
||||
The quotient group $\mathbb{R}/\mathbb{Z}$ is isomorphic to $([0,1),+_1)$, the group of real numbers in the interval $[0,1)$, under addition modulo 1.
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ $$
|
|||
t=\frac{1}{|G|}\sum_{g\in G}|\text{Fix}(g)|
|
||||
$$
|
||||
|
||||
Para cada entero $n\ge2$, el grupo cociente $\mathbb{Z}/n\mathbb{Z}$ es un grupo cíclico generado por $1+n\mathbb{Z}$ y por tanto $\color{red}{\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n}$.
|
||||
Para cada entero $n\ge2$, el grupo cociente $\mathbb{Z}/n\mathbb{Z}$ es un grupo cíclico generado por $1+n\mathbb{Z}$ y por tanto $\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n$.
|
||||
|
||||
El grupo cociente $\mathbb{R}/\mathbb{Z}$ es isomorfo a $([0,1),+_1)$, el grupo de números reales en el intervalo $[0,1)$, bajo la adición módulo 1.
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ $$
|
|||
t=\frac{1}{|G|}\sum_{g\in G}|\text{Fix}(g)|
|
||||
$$
|
||||
|
||||
各整数 $n\ge2$ に対して、商群 $\mathbb{Z}/n\mathbb{Z}$ は $1+n\mathbb{Z}$ によって生成される巡回群であり、したがって $\color{red}{\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n}$ となります。
|
||||
各整数 $n\ge2$ に対して、商群 $\mathbb{Z}/n\mathbb{Z}$ は $1+n\mathbb{Z}$ によって生成される巡回群であり、したがって $\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n$ となります。
|
||||
|
||||
商群 $\mathbb{R}/\mathbb{Z}$ は $([0,1),+_1)$ と同型です。これは区間 $[0,1)$ 上の実数のモジュロ1の加法群です。
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ $$
|
|||
t=\frac{1}{|G|}\sum_{g\in G}|\text{Fix}(g)|
|
||||
$$
|
||||
|
||||
Для каждого целого числа $n\ge2$ фактор-группа $\mathbb{Z}/n\mathbb{Z}$ является циклической группой, порождённой элементом $1+n\mathbb{Z}$, и поэтому $\color{red}{\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n}$.
|
||||
Для каждого целого числа $n\ge2$ фактор-группа $\mathbb{Z}/n\mathbb{Z}$ является циклической группой, порождённой элементом $1+n\mathbb{Z}$, и поэтому $\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n$.
|
||||
|
||||
Фактор-группа $\mathbb{R}/\mathbb{Z}$ изоморфна $([0,1),+_1)$, группе вещественных чисел в интервале $[0,1)$ с операцией сложения по модулю 1.
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ $$
|
|||
t=\frac{1}{|G|}\sum_{g\in G}|\text{Fix}(g)|
|
||||
$$
|
||||
|
||||
對於每個整數 $n\ge2$,商群 $\mathbb{Z}/n\mathbb{Z}$ 是由 $1+n\mathbb{Z}$ 生成的循環群,因此 $\color{red}{\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n}$。
|
||||
對於每個整數 $n\ge2$,商群 $\mathbb{Z}/n\mathbb{Z}$ 是由 $1+n\mathbb{Z}$ 生成的循環群,因此 $\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n$。
|
||||
|
||||
商群 $\mathbb{R}/\mathbb{Z}$ 同構於 $([0,1),+_1)$,即區間 $[0,1)$ 上以 1 為模的實數加法群。
|
||||
|
||||
|
|
|
@ -17,7 +17,7 @@ $$
|
|||
t=\frac{1}{|G|}\sum_{g\in G}|\text{Fix}(g)|
|
||||
$$
|
||||
|
||||
对于每个整数 $n\ge2$,商群 $\mathbb{Z}/n\mathbb{Z}$ 是由 $1+n\mathbb{Z}$ 生成的循环群,因此 $\color{red}{\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n}$。
|
||||
对于每个整数 $n\ge2$,商群 $\mathbb{Z}/n\mathbb{Z}$ 是由 $1+n\mathbb{Z}$ 生成的循环群,因此 $\mathbb{Z}/n\mathbb{Z}\cong\mathbb{Z}_n$。
|
||||
|
||||
商群 $\mathbb{R}/\mathbb{Z}$ 同构于 $([0,1),+_1)$,即区间 $[0,1)$ 上以 1 为模的实数加法群。
|
||||
|
||||
|
|
|
@ -4,8 +4,8 @@ import Footer from '@/components/Footer.astro'
|
|||
import Header from '@/components/Header.astro'
|
||||
import Navbar from '@/components/Navbar.astro'
|
||||
import GithubCard from '@/components/Widgets/GithubCard.astro'
|
||||
import PhotoSwipe from '@/components/Widgets/PhotoSwipe.astro'
|
||||
import Scrollbar from '@/components/Widgets/Scrollbar.astro'
|
||||
// import PhotoSwipe from '@/components/Widgets/PhotoSwipe.astro'
|
||||
// import Scrollbar from '@/components/Widgets/Scrollbar.astro'
|
||||
import themeConfig from '@/config'
|
||||
import Head from '@/layouts/Head.astro'
|
||||
import { getPageInfo } from '@/utils/page'
|
||||
|
@ -48,8 +48,8 @@ const MarginBottom = isPost && themeConfig.comment?.enabled
|
|||
<Footer />
|
||||
</div>
|
||||
<Button supportedLangs={supportedLangs} />
|
||||
<Scrollbar />
|
||||
<!-- <Scrollbar /> -->
|
||||
<GithubCard />
|
||||
<PhotoSwipe />
|
||||
<!-- <PhotoSwipe /> -->
|
||||
</body>
|
||||
</html>
|
||||
|
|
|
@ -25,13 +25,13 @@
|
|||
--at-apply: 'mb-4 mt-6 font-semibold';
|
||||
}
|
||||
.heti :where(h1) {
|
||||
--at-apply: 'mt-9 text-7';
|
||||
--at-apply: 'mt-9.6 text-7';
|
||||
}
|
||||
.heti :where(h2) {
|
||||
--at-apply: 'mt-9 text-6';
|
||||
--at-apply: 'mt-9.6 text-6';
|
||||
}
|
||||
.heti :where(h3) {
|
||||
--at-apply: 'mt-6.75 text-5';
|
||||
--at-apply: 'mt-6.5 text-5';
|
||||
}
|
||||
.heti :where(h4) {
|
||||
--at-apply: 'text-4.5';
|
||||
|
@ -62,7 +62,7 @@
|
|||
|
||||
/* Links */
|
||||
.heti :where(a:not(.gc-container)) {
|
||||
--at-apply: 'break-all font-medium tracking-0 underline underline-0.075em decoration-secondary/40 underline-offset-0.2em';
|
||||
--at-apply: 'break-all font-medium tracking-0 underline underline-0.075em decoration-secondary/40 underline-offset-0.1em';
|
||||
--at-apply: 'transition-colors hover:(c-primary decoration-secondary/80) lg:underline-0.1em';
|
||||
}
|
||||
|
||||
|
@ -72,9 +72,18 @@
|
|||
transform: translateZ(0);
|
||||
-webkit-transform: translateZ(0);
|
||||
}
|
||||
/* .heti :where(p:has(> img):not(:has(> :not(img)))) {
|
||||
--at-apply: 'mb-6';
|
||||
}
|
||||
.heti :where(p:has(> img):not(:has(> :not(img))):is(:not(h1, h2, h3, h4, h5, h6, p) + *, :not(figure) *)) {
|
||||
--at-apply: 'mt-6';
|
||||
} */
|
||||
.heti :where(figure) {
|
||||
--at-apply: 'mx-auto mb-4';
|
||||
}
|
||||
/* .heti :where(:not(h1, h2, h3, h4, h5, h6) + figure) {
|
||||
--at-apply: 'mt-6';
|
||||
} */
|
||||
.heti :where(figcaption) {
|
||||
--at-apply: 'mt-2 text-center text-sm text-secondary/80';
|
||||
}
|
||||
|
@ -83,6 +92,12 @@
|
|||
.heti :where(pre) {
|
||||
--at-apply: 'mb-4 overflow-auto uno-round-border px-4 py-3 bg-secondary/5!';
|
||||
}
|
||||
.heti pre :where(code) {
|
||||
--at-apply: 'border-none bg-transparent p-0';
|
||||
}
|
||||
html.dark .heti pre :where(span) {
|
||||
--at-apply: 'text-[var(--shiki-dark)]!';
|
||||
}
|
||||
.heti pre::-webkit-scrollbar {
|
||||
--at-apply: 'h-1.25 lg:h-1.5';
|
||||
}
|
||||
|
@ -92,12 +107,6 @@
|
|||
.heti pre::-webkit-scrollbar-thumb:hover {
|
||||
--at-apply: 'bg-secondary/25';
|
||||
}
|
||||
.heti pre :where(code) {
|
||||
--at-apply: 'border-none bg-transparent p-0';
|
||||
}
|
||||
html.dark .heti pre :where(span) {
|
||||
--at-apply: 'text-[var(--shiki-dark)]!';
|
||||
}
|
||||
|
||||
/* Inline Code */
|
||||
.heti :where(code) {
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue